energy & resources | economic analysis & strategy | commercial & policy advice

Stephen Wilson

ANA Conference

Sydney | 6th October 2023

Various 'HATS'	au.linkedin.com/in/ener	gyeconomist in
Advisory	Managing Director	CAPEOTWAY
Advocacy	nuclear energy focused	*
Pocoarch	Visiting Fellow Centre for Energy Security	
Research	Adjunct Professor Mechanical & Mining Engineering	THE UNIVERSITY OF QUEENSLAND
Development	Director an energy tec	hnology start-up
		1

Without nuclear power generation in the system I believe we will find it is close to impossible to deeply decarbonise the Australian economy

...but it would be a mistake to think that nuclear power in Australia is inevitable as a result

2

Australia's energy policy

2000 – present

October 2023 | Sydney

ANA Conference

What is the **Power Cost Paradox**?

Levelised Cost of Energy

Question

- Wind and solar
 \$50 /MWh
- Nuclear (First-of-a-Kind)
 \$100 /MWh

How much of each should we build to get the lowest **TOTAL SYSTEM COST**

?

Two main messages delivered to governments, oppositions and to the nation

The problem

- The Power Cost Paradox
- The Power System Paradox
- The Power Market Paradox
- Saturation
- Balancing

'PLAN B'

Main finding:

• Australia is capable

Main recommendation:

Create real options
 starting NOW

October 2023 | Sydney

ANA Conference

An Australian nuclear industry

Starting with submarines?

TOM FRAME

editor

October 2023 | Sydney

for nuclear energy plants to be operating in Australia from the 2030s

OF QUEENSLAND

Engineering, Architecture a Information Technology

ANA Conference

A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2022 School of Chemical Engineering Dow Centre for Sustainable Engineering Innovation

7

An Australi nuclear indus

Starting with submar

÷ UNSW Canberra

	LCoE worked examples	S	IRO GenCost	for i	illustration		UPDATED	
		(hig	th cost case)	(low	cost case)	(low	cost case)	
n Australian	Reactor module capacity, thermal		133		200		250	MWth
	Thermal efficiency		45%		30%		31%	
iclear industry	Reactor module capacity, electrical-gross		60	_	60		77	MWe
lolour muuou y	Nº modules and plant capacity	12	720	12	720	12	924	MWe
	Plant capacity on a sent-out basis		683		683		875	MWe
rting with submarines?	Series Nº & CapEx on a per unit capacity basis	Nth	16.000	Nth	4.800	Nth	3.740	AUSM /MW
	CapEx on a total plant overnight cost basis		11,520		3,456		3,456	AU\$M
	Construction period	5 years	60	3 years	36	3 years	36	months
	Interest During Construction (IDC) approximate		1,728	_	275		275	AUSM
and the second second	CapEx including capitalised IDC @WACC		13,248		3,731		3,731	AUSM
	Project Contingency	30%	3974	10%	373	10%	373	AUSM
and the second	Process Contingency (technology maturity)	10%	1325	0%	0	0%	0	AUSM
at and the	CapEx including IDC and Contingencies		18,547		4,104		4,104	AUSM
	Technical service life		60		60		60	years
	Weighted Average Cost of Capital		6.00%		5.30%		5.30%	
	Capital recovery period		30		60		60	years
的复数的 化合物管理合物	Fixed operation & maintenance per unit of capacity		\$200,000		\$100,000		\$100,000	/MW
	Capacity charge as an annuity		\$1,871,436		\$316,359		\$246,524	/MW /y
	Plant Capacity Factor		80%		90%		90%	of capacity x 24h/d x 365d/y
	Annual generation sent out		6,648		7,479		7,466	MWh /y per MWe of gross generating capacity
	Capital recovery charge		\$281.51		\$42.30		\$33.02	/MWh
TOM FRAME	Annual fixed O&M		1,728 275 275 AU\$ 13,248 3,731 3,731 AU\$ % 3974 10% 373 10% 373 AU\$ AU\$ % 1325 0% 0 0% 0 AU\$ 18,547 4,104 4,104 AU\$ AU\$ 60 60 60 60 gear 30 60 60 gear gear \$200,000 \$100,000 \$100,000 \$100,000 MW \$1,871,436 \$316,359 \$246,524 MW 80% 90% 90% of ca 6,648 7,479 7,466 MW \$30.08 \$13.37 \$13.39 MW	/MWh				
TOM FRAME editor	Fuel + variable operation & maintenance		\$20.00		\$10.00		\$10.00	/MWh
	Long-Run Average Cost over capital recovery period		\$331.59		\$65.67		\$56.41	/MWh
October 2023 Sydney	ANA Conterence							8

LCoE is *not* an investment-grade metric

October 2023 | Sydney

ANA Conference

MANAGEMENT

MANAGEMENT

Cost estimate classification matrix and expected accuracy versus project maturity

Expected ACCURACY

MANAGEMENT

Cost estimate classification matrix and expected accuracy versus project maturity

Expected ACCURACY

Cost cannot be considered simplistically or in a vacuum

5. Energy SECURITY	considerations at the national-level	
4. The VALUE	to the system, including real option value	
3. The SYSTEM	What is the effect on system costs of 1, 2, 3 N plants ?	
2. The FLEET	How would that cost come down from 1 st to N th -of-a-Kind ?	
1. The ASSETS	What would it actually cost to build a nuclear plant in Australia ?	
October 2023 Sydney	ANA Conference	13

SCOPE of the study

What would be required for nuclear energy plants to be operating in Australia from the 2030s Stephen Wils THE UNIVERSITY OF QUEENSLAND

STRALIA.

October 2023 | Sydney

ANA Conference

TABLE 5 Illustrative build-up of capital charge and financing structure, showing average energy unit costs

NuScale/Fluor central estimate 77 (AACE class 3-4, U.S. ref. unit cost basis)	AACE lower	2 850	AACE	2017US\$ /kW+ gross
Overnight capital cost on a per unit capacity basis (2017US\$ to 2020 AU\$)	2 893	3 993	5 613	2020AU\$ / kWe gross
CapEx on a total plant overnight cost basis	2 757	3 690	5 187	AU\$M
Owners' costs: AU\$2015, adjusted to AU\$2020	203	393	765	AU\$M
CapEx: overnight costs plus owners' costs	2 959	4 083	5 952	AU\$M
Construction period (authors' conservative assumptions)	36	48	60	months
Interest During Construction (IDC) approximate	235	433	789	AU\$M
CapEx including owners' costs, IDC capitalised @WACC	3 195	4 516	6 740	AU\$M
Project Contingency 30%	958	1 3 5 5	2 0 2 2	AU\$M
CapEx including IDC and Contingencies authors' estimate	4 153	5 871	8 762	AU\$M
10% Government finance		yield 1.0%		
20% Special purpose bonds		yield 3.0%		
40% Commercial debt plus ECA finance		yield 6.1%		
30% Equity portion		yield 7.2%		
Illustrative WACC with the above assumptions		5.3%		
Capital recovery period		30		years
Fixed operation & maintenance per unit of capacity		100		AU\$ /kW
Capacity charge as an annuity	316	447	667	AU\$ /kW /y
Plant Capacity Factor		95%		of capacity x 24b/d x 365d/y
Operating hours per year		8 322		h/y
Capital recovery charge expressed per unit of output	38	54	80	AU\$ /MWh
Annual fixed O&M expressed per unit of output		12		AU\$ /MWh
Fuel + variable operation & maintenance		10		AU\$ /MWh
Long-run average cost of energy, levelised over 30 y capital recovery	60	76	102	AU\$ /MWh

Sources: Authors' estimates and calculations, using key inputs from NuScale as cited and described in chapter 2: references 77,74,77; and Table 6.1 from report for ref. ¹⁴: WSP Parson's Brinkerhoff (Feb 2016) *Quantitative Analysis and Initial Business Case – Establishing* a Nuclear Power Plant and Systems in South Australia.

15

FINANCING

Table 5 Illustrative build-up of capital charge and financing structure, showing average energy unit costs

AACE case^	Lowest	Lower	CENTRAL‡	Higher	Highest	
Overnight CapEx	2 983	3 488	3 993	4 604	5 613	2020AU\$ /kWe gross
TOTAL CapEx *	4 153	5 002	5 871	7 032	8 762	AU\$M
of a-Kind	'Best' Nth	'Worst' Nth	5 th -of-a-Kind	'Best 1 st	'Worst 1 st	Learning
Assumed build	36	42	48	54	60	months
LRACE	60	68	76	86	102	AU\$ /MWh
^ Based on the mix of class 3 and class 4 components Discounted at 5.3% per annum with capital recovered over 30 years # Based on NuScale US\$2850/kW, gross in 2017 US dollars Discounted at 5.3% per annum with capital recovered over 30 years annual fixed O&M of \$100 /kW and variable O&M of \$10 /MWh						

+ Based on NuScale US\$**2850**/KW_e gross in 2017 US dollars

* for a **12**-module plant x **77** MW_e in a generic location

October 2023 | Sydney

ANA Conference

16

plant capacity factor of 95% giving 8322 hours per year at full load

Cost cannot be considered simplistically or in a vacuum

5. Energy SECURITY	considerations at the national-level	
4. The VALUE	to the system, including real option value	
3. The SYSTEM	What is the effect on system costs of 1, 2, 3 N plants ?	
2. The FLEET	How would that cost come down from 1 st to N th -of-a-Kind?	
1. The ASSETS	What would it actually cost to build a nuclear plant in Australia	?
October 2023 Sydney	ANA Conference	17

Technology Learning —the Grubb Curve

- A. accidents
- R. radiation
- N. nuclear 'waste'

1.	costs
2.	time

3. 'waste' *

* this is actually:

Slightly Used Nuclear Fuel

Does nuclear energy **cost too much?**

...or are Westerners stupid?

October 2023 | Sydney

ANA Conference

20

Cost cannot be considered simplistically or in a vacuum

5. Energy SECURITY	considerations at the national-level	
4. The VALUE	to the system, including real option value	
3. The SYSTEM	What is the effect on system costs of 1, 2, 3 N plants ?	
2. The FLEET	How would that cost come down from 1 st to N th -of-a-Kind ?	
1. The ASSETS	What would it actually cost to build a nuclear plant in Australia	?
October 2023 Sydney	ANA Conference	22

"There is no single full-fidelity model of a power system."

... but there are plenty of useful models

Dr Archie Chapman, University of Queensland

October 2023 | Sydney

ANA Conference

26

South Australia:

Wind + solar driven (subsidised) Gas dependent (and import/export) Nuclear is excluded

System cost minimisation

- 5-region NEM with interconnector constraints and investment
- unit commitment constraints simultaneously optimising for a given generation mix:
- long-run investment AND 24x365
 hourly dispatch
- emissions constraint (shown)
- OR wind + solar share
- low sensitivity to SMR CapEx
- high flexibility gains entry
- optimisation drives utilisation

Generation costs in the interconnected system

Renewables-based WITHOUT nuclear

No emissions WITH nuclear

\$180 /MWh + + +

- + transmission on a huge scale
- + distribution for two-way flows
- + control systems ...

\$90 /MWh - - -

- use existing transmission
- avoid distribution upgrades
- avoid system balancing problems

Cost cannot be considered simplistically or in a vacuum

5. Energy SECURITY	considerations at the national-level	
4. The VALUE	to the system, including real option value	
3. The SYSTEM	What is the effect on system costs of 1, 2, 3 N plants ?	
2. The FLEET	How would that cost come down from 1 st to N th -of-a-Kind?	
1. The ASSETS	What would it actually cost to build a nuclear plant in Australia	?
October 2023 Sydney	ANA Conference	31

Here is what has happened to **PRICES**

a SYSTEM ≠ a market

Finding and observation from earlier research

"No-one can produce a bankable price forecast of the Australian electricity market today"

 a senior banker with 25 years of experience financing the Australian energy sector

Our research in mid-2017 found that this view is **universally held** by the major Australian banks and the major international banks present in Australia

ECONOMICS

THE UNIVERSITY OF QUEENSLAND

Applicability

SMRs are designed to be used for:

- Electricity
- Balancing renewable energy
- Hydrogen production
- eFuel synthesis
- Desalination of seawater
- Heat for industry

Value

Real options to build nuclear plants with small modular reactors have substantial value arising from decarbonisation and deep uncertainty in grids

Figure 16 SMR turbine bypass load following

Some Perspectives on costs

remarks on insights from recent research

Z Frequency STABILITY

Emerging Frequency Control Mechanisms in IBR Dominated Power Systems

Nicholas Maurer School of Mechanical and Mining Engineering The University of Queensland Brisbane, Queensland 4072 Stephen Wilson School of Mechanical and Mining Engineering The University of Queensland Brisbane, Queensland 4072 Archie C. Chapman School of Information Technology and Electrical Engineering The University of Queensland Brisbane, Queensland 4072

Abstract—As inverter-based resource (IBR) penetration increases, system inertia levels are decreasing and the type of frequency response available is changing. This paper explores the adequacy of emerging technologies in providing post-contingency frequency control in the absence of traditional synchronous generators (SGs). The three technologies considered are (1) the fast frequency response (FR) of a wind turbine generators, (2) the FFR of grid-scale buttery systems and (3) the inertial contribution of synchronous condensers (SCs). The model incoreporating these technologies is built around the aggregated swing equation and also includes the primary response of steam and hydro generators.

The findings indicate that although no individual technology can adequately improve the frequency response, combinations of them can. For example, SCs and batteries were seen to maintain the rate of change of frequency (RoCoF) and nadir within safe operating levels. This suggests that a more granular set of grid services is required to maintain system stability and that these services can be offered by a range of new technologies. The fast frequency response (FFR) of a wind turbine generator (WTG).

 the FFR of a battery energy storage system (BESS) and
 the inertial contribution of synchronous condensers (SCO)

Each of these technologies has received individual attention in literature, wind FFR in [2], ramp FFR in [3] and synchronous condensers in [4]. This research adds to this work by studying a reduced-form system where the effects of each technology can be studied together.

In July of this year, AEMO CEO announced plans to "engineer grids that are capable of running at 100% instantaneous penetration of renewable energy" by the year 2025 [5]. This announcement extended AEMO's previous target of 75% penetration outlined in their Integrated System Plan [6]. As Australia prepares to enter operating regions heretofore unseen he order second the assettd datafeeting a cher understudies of

CLIMATE what about carbon costs?

Cost cannot be considered simplistically or in a vacuum

5. Energy SECURITY	considerations at the national-level	
4. The VALUE	to the system, including real option value	
3. The SYSTEM	What is the effect on system costs of 1, 2, 3 N plants ?	
2. The FLEET	How would that cost come down from 1 st to N th -of-a-Kind ?	
1. The ASSETS	What would it actually cost to build a nuclear plant in Australia?)
October 2023 Sydney	ANA Conference	40

"Energy security IS national security."

What is 'energy security' ?

definition:

the power to be free and to do work

The Canberra definition

first put forth at the IPA Retreat the in

May 2023 at the Hotel Canberra

energy & resources | economic analysis & strategy | commercial & policy advice

Stephen Wilson

ANA Conference

Sydney | 6th October 2023

Backups

WHAT'S GAMBLING REALLY COSTING YOU?

For free and confidential support call 1800 858 858 or visit gamblinghelpline.org.au

What are we thinking?

We are betting the power system ... and hence the economy

Best case: odds of 150:1

Worst case: odds of 500:1 ...or longer

Since the power system is our civilizational support structure

The current official plan is a perpetual recession machine

October 2023 | Sydney

ANA Conference

Maria, what would be your advice for Australia?

"Well! First: stop blowing up your coal plants - you're not ready to live without them yet!"

— Maria Korsnick, CEO of NEI, highly experienced engineer

The Hon Anthony Albanese MP Prime Minister Parliament House CANBERRA ACT 2600

Dear Prime Minister

ENERGY POLICY

A group of energy and ene reflect in detail on electric undertaken in the context of global and regional setting: group shares a common co strongly evidenced by the to educate and inform the

The challenge of climat emissions. Therefore, al are the lowest carbon. and engineering and a

As a coordinator of t engineers and power and plans for deep p carbon future, we se successive federal a infrastructure, that on millions of consu

We believe that the economic cost. In case in other cou refereed research intermittent sou considered and recent public re

The electricity Europe, Germa and distributi being expose

Founder and Principal: Siveva Consulting

- Street

Dr Adi Paterson

 Nalve over-relance on wind and solar power - backed by government policies and supported, until solar power - backed by government policies and supported, until neared ones reserve on server and some power - option of government powers and topporter, tenn recently, by overconfident advice. For example, the Frankholes institute for Solar Energy Research recently, by overconnent advice, nor example, the traumoner institute nor solar time and execution of a body not dissimilar to CSIRO Energy research groups - has disclosed poor solar output in formal reports. Neglocting/misunderstanding the importance of the security of supply of gas in the short-term. Negrecting/ mouncertaining the importance of the second on supply to get in the interview.
 Previature removal of 12 nuclear plants from electricity supply as a matter of rutional policy.

Germany's major policy blunders are visible in Australia's energy policy. Our national circumstances are emany's major policy bundlers are visible in national s energy policy. Our national protomosanian are enewhat different from Germany's. However, like Germany, our policy fallings have a 20-year legacy.

porcessar surveys own vernary s. nowever, one ventary, our ponty range rove a survey range. They span many parliaments, both parties, federal and state governments, and Public Research Institutions. Our current policy settings will exacerbate, not ameliorate, the problems. No single prescriptive solution ther current pump seconds were executiver, not amenorane, the problems, no single prescriptive solution will resolve the problems. The challenges will not all be magically solved in the 4yr parliament, but a major win resorve the problems. The chargenges will not an be magically solved in the 47° parameter, out a major course correction is needed row. The prople have allocated that responsibility to you. Work on corrective

course correction is nearonal row. The proper new announces that responsionary to you, must no contain action should begin insteadiately to avert the serious and systemic defects that will be amplified without actions and the serious and systemic defects that will be amplified without the serious and systemic defects that will be amplified without actions and systemic defects that will be amplified without actions and systemic defects that will be amplified without actions and systemic defects that will be amplified without actions and actions are actions and actions and actions are actions and actions and actions and actions are actions and actions and actions and actions are actions and actions and actions are actions and actions are actions and actions are actions are actions and actions are actions are actions are actions are actions are actions and actions are actions a action will start to steer the nation away from the rocks and toward safer water. Our expertise and knowledge relate to how and why deep penetration of intermittent sources is fatal to Our expertise and knowinger reace to now any wry seep penetration or memoratin instances in take to predictable power system operations. This includes work done in our universities, and our connections with

presentance power system operations. This includes work done in our sinvestitutes, and our corrections with international experts, who are providing similar advice in their own settings. Your advisors will have taken the setting of the setting International experts, who are providing similar advice in their own seconds, four advisers will have taken note of the repetition of firm, low carbon nuclear in places like California and Germany most recently. It is note of the resention of time, you carbon nuclear in praces new campring and version processing most recently, it is now abundantly clear that a much higher proportion of firm, always on, energy sources are required in now managers over that a much inger proportion or nm, analysis on, energy sources are required in prids for lowest cost, predictable supply of quality electricity. The full cost and impact of poor voltage and This for solvest cost, predictable supply on quality electricity. The full cost and impact of poor voltage and requiring costrol on consumers and critical equipment is still to be determined, but there is little double that it is a present reality for our industry and domestic consumers. I have been invited by the cross-party Friends of Nuclear Industries group to moderate an open discu

I nave been invited by the cross-party triands or nuclear industries group to moderate an open discussion with some 20 engineers, energy system professionals and policy experts in Parliamerc House on November are a set to state the state of the state o sets some 20 engreens, energy system protessorias and poory experts in remainer noise on noisense 24°, The speakers will address the enforcements of the risks in the integrated System Plan. We propose 24". The speakers was aboress the seriousness of the risks in the integrated system risk, we propose prodent and urgent preparation of PLAN 8, including SMRs, to anchor reliable, and predictable provision For my colleagues and L the technology of Australia's 21" century power system is not a question of

For my conseques and 1, the technology of Australia's 21° century power system is not a question of ideology. Nor Is it a matter of 'taste', or fashion, or political preference. It is a question of acientifically Collectively the participants have many years of experience in electricity generation and transmits Cohecovery the participants have many years or experience in electricity generation and transmission industries, in Australia and around the world. It is a public duty to outline the implications, and the thes, in Automa and around the works, is in a point: duty or outrie the implications, and the guerces and impacts of our current pettings. On the monsing of the 25th there will be a seminar for

more in-depth discussion on important and urgent key issues.

31 - P

Dr Adi Paters

BSc, PhD (Cape Town), Hon DSc (Wollongorg), FSTE, Hon FileAust, FRSN

"...a growing number of experienced engineers and power system experts in Australia who are deeply concerned about the current activities and plans for deep penetration of intermittent renewable sources in the eastern grid."

"We propose prudent and urgent preparation of **PLAN B**, including SMRs, to anchor reliable, and predictable provision of electrical energy to consumers."