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Radiological Risk in Perspective

What every decision maker should know

I UNSW Sydney, Australia, May 13, 2024
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Associate Editor Radiation Physics and Chemistry
Savannah River National Laboratory Joint Faculty Appointment
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North Carolina State University
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What are we going to cover?

* Nuclear fuel cycle » Environmental impact
* Nuclear Waste — Why renewables are so
— Interim storage important
— Scale of the problem — Why nuclear is so
— Transportation safety complimentary
— Permanent disposal  Nuclear Accidents
« Radiation risk in context — Three Mile Island
— What are the risks associated — Fukushima
with radiation dose — Chernobyl
— Where do we normally get — Safety (transportation and
radiation dose? industrial)

e Questions
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Used nuclear fuel

We have used nuclear fuel whether we like it
or not

We will have more used nuclear fuel than we
do now

We need to find a solution whether we
support nuclear energy or not




Interim storage



NC STATE UNIVERSITY Scale of the problem

The US has received almost 20%
of its electrical supply for over 50
years.

- Despite this, according to the US
Department of Energy,i “In fact,
the U.S. has produced roughly
83,000 metric tons of used fuel
since the 1950s—and all of it
could fit on a single football field at
a depth of less than 10 yards.”

T Accessed May 30, 2020 https://www.energy.gov/ne/articles/5-fast-facts-
about-spent-nuclear-fuel
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Transportation Safety

1. 30 ft drop onto unyielding surface
2. 40 inch drop onto steel bar

3. 1475° F for 30 min

4. 50 ft water for 8 hrs



NC STATE UNIVERSITY Permanent Disposal

o |I.S. Department of Energy Facility ——
* Designed for permanent disposal of Transuranic (TRU) radioactive waste
o 2150 feet deep
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Waste Isolation Pilot Plant (WIPP)




The 2014 WIPP release event

Hayes R. B. (2016) Consequence assessment
of the WIPP radiological release from February
2014. Health Phys. 110(4), 342-360.



Mother natures example of geological
disposal for used nuclear fuel

Cowan, G. A. (1976). A natural fission reactorScientific American,2351), 36-47.
doi:10.1038/scientificamerican0776-36

Hayes RB. (2022) The ubiquity of nuclear fission reactors throughout time
and space. Physics and Chemistry of the Earth, Parts A/B/C 125, 103083



Radiation Risk in Context
* 1 mrem = daily background




Radiation Risk in Context

e 1 mrem —."“”.a

— 5 mrem, coast to coast round trip, EPA annual drinking water standard




Radiation Risk in Context

— 5 mrem =2

* 10 mrem = EPA anng limit 'for ffsite airborne effluent release




Radiation Risk in Context

e 1 mrem —.—‘“?ﬂ

— 5 mrem

* 10 mrem
— 40 mrem, maximum internal dose from natural potassium
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Radiation Risk in Context

e 1 mrem —._‘“?ﬂ

— 5 mrem
e 10 mrem
— 40 mrem

* 100 mrem public dose limit from any nuclear facility or a
pelvis X-ray
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Radiation Risk in Context

* 1 mrem
— 5 mrem

* 10 mrem
— 40 mrem,
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Radiation Risk in Context

1 mrem
— 5 mrem

10 mrem
— 40 mrem

100 mrem
— 320 mrem

1,000 mrem, minimum EPA evacuation guideline or nuclear medicine
stress test or head, chest or hip CT scan

9

VORTON

SALT
ST

rAll Cook r'ng_.-;,:c' v
% nf,’
i

STRESS

ITUTE’

s




NC STATE UNIVERSITY Radiation Risk in Context
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e 10 mrem
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NC STATE UNIVERSITY Radiation Risk in Context
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10,000 mrem is potentially a 0.5% cancer probability

— Typical cancer probability
from all sources is 40%
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NC STATE UNIVERSITY Radiation Risk in Context
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NC STATE UNIVERSITY Radiation Risk in Context
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Radiation Risk in Context

1 mrem = daily background
— 5 mrem, coast to coast round trip

10 mrem = EPA annual limit for offsite airborne effluent release
— 40 mrem, maximum internal dose from natural potassium

100 mrem public dose limit from any nuclear facility or a pelvis X-ray
— 320 mrem average annual natural background

1 rem minimum EPA evacuation guideline or nuclear medicine stress test or
head, chest or hip CT scan
— 5 rem maximum radiation worker legal dose

10 rem is potentially a 0.5% cancer probability increase
— Typical cancer probability from all sources is 40%

100 rem gives a 5% increase in cancer probability
— 500 rem is around the LD30/50 dose (lethality)

1000 rem expected death and acute radiation syndrome



UEVAANESENE  Where do we get dose?

Nuclear Energy

Solar Radiation

Nuclear
Medicine -
Radioactive
Waste
4 ++
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Sources of Radiation Exposure

Industrial <0.1%
Consumer 2%
Terrestrial 3%

Occupational < 0.1%

Internal 5%

625 mrem/yr

US average Space 5%

Computed Tomography 24%

Medical Background

Nuclear Medicine 12% - Radon & Thoron 37%

Interventional Fluoroscopy 7%

Conventional Radiography/Fluoroscopy 5%

Average Annual Radiation Dose

Sources Radon&

Units
D it t mrem (United States) 228 mrem 147 mrem 77 mrem 43 mrem 33 mrem 33 mrem 29 mrem 21 mrem 13 mrem 0.5 mrem 0.3 mrem
epartmentyq ysy (international) 2.28 mSv 1.47 mSv 0.77 mSv 0.43 mSv 0.33 mSv 0.33mSv 0.29 mSv 0.21mSv 0.13 mSv 0.005 mSv 0.003 mSv

NUCLEAR

(Source: National Council on Radiation Protection & Measurements, Report No. 160)
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Why renewables
are so important

Materials
requirements

Land and materials
requirements

Safety is important
too

Environmental impact




Why renewables are so important

 Life-cycle
greenhouse
gas emissions
per kWh
generated from
all energy
sources.

Quadrennial Technology
Review An Assessment of
Energy Technologies and
Research Opportunities, US
Department of Energy,
Washington DC, Sept 2015



NC STATE UNIVERSITY Land requirements

Lovering J, Swain M, Blomqvist L, Hernandez RR (2022) Land-use intensity
of electricity production and tomorrow’s energy landscape. PLOS ONE 17(7):
e0270155. https://doi.org/10.1371/journal.pone.0270155
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270155 l
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Nuclear Geo Wind- BioRes NG- Hydro Coal NG+ CSP PV Wind+BioDed
Electricity Source
pepariment or

NUCLEAR ENGINEERING Land use intensity of electricity (LUIE: ha/TWh/y), shown on log scale.



NC STATE UNIVERSITY Material requirements

18000
16000
14000 m Concrete & cement
g 12000 m [ron/steel
— m Copper
—_ 10000 o
o) m Aluminium
X 8000 =Gl
8 ass
S 6000 m Silicon
Y 4000
2000
I — ]
0

Coal Gas CC Nuclear PWR Hydro Wind Solar PV

US Department of Energy, 2015. Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities.

D Depatinsiitof https://www.world-nuclear.org/information-library/energy-and-the- accessed on
", NUCLEAR ENGINEERING environment/mineral-requirements-for-electricity-generation.aspx 1/15/2024
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Nuclear Accidents

 Three mile island
 Fukushima
« Chernobyl
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Aircraft (NPP) & similar events?

*10 CFR 50.150 Aircraft impact assessment.

*(a) Assessment requirements. (1) Assessment. ... the effects on the facility of the impact of a large, commercial aircraft.
Using realistic analyses,...

+(i) The reactor core remains cooled, or the containment remains intact; and

-... based on the beyond-design-basis impact of a large, commercial aircraft used for long distance flights in the United
States, ...

https://www.energy.gov/ne/articles/new-railcar-designed-
transport-spent-nuclear-fuel-completes-final-testing



Custom train design

Is this oné€ of the
- safest trains ever
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General safety

Krewitt, Wolfram, Fintan Hurley, Alfred Trukenmiiller,
and Rainer Friedrich. "Health risks of energy
systems." Risk Analysis 18, no. 4 (1998): 377-383.
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Table III. Occupational Health Impacts per TWh

Major Minor
Years of life accidents accidents
lost and diseases and diseases
Total Net Total Net Total Net
Coal 9.2 6.9 10.3 7.6 114 38
Lignite 1.5 0.2 1.1 0.1 29 - 20
Oil 5.8 2.8 2.5 03 64 - 32
Gas 0.6 0.1 04 0.04 10 - 03
Nuclear 0.5 0.3 0.3 0.05 7.8 0.1
PV 35 0.7 30 08 752 -54
Wind 2.1 0.3 1.8 04 50 7.8
https://www.world-nuclear.org/information-
library/safety-and-security/safety-of-
plants/safety-of-nuclear-power-reactors.aspx
<0.01 accessed 8/26/2023
\z$
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Reference Concept - Site Plan

Consolidated Interim Fuel Site — ==em ‘

OWER CONTROLLED AREA POUNDARY

m?

= owner controlled area (OCA)

* 5.5 sg-miles (3,540 acres)

* 4,800+ feet stand-off distance from edge
of storage pad edge to OCA

= operations area (OA)
* 1.9 sg-miles (1,210 acres) \
» fence boundary and perimeter road :
* includes administration and maintenance |

structures, Storage Cask Fabrication
Facility, and OA railyard

= protected area (PA) ]

* includes security and inspection
structures, Cask Handling and Transfer
Facility, dry storage pad, and PA railyard

RAL SPUR TO MAN LINE RAILRORD

OWER CONTROLLED AREA BOLMDARY

CASK MANTENANCE Facumy

5,400 FEET (OCA TO STORAGE PAD)
e

T
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Questions?
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Spare slides for anticipated questions
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NC STATE UNIVERSITY Linear no-threshold theory

Possible Dose-Response
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Fear, stress and cancer

Fitzgerald, Devon M., P. J. Hastings, and Susan M. Rosenberg. "Stress-induced
mutagenesis: implications in cancer and drug resistance." Annual Review of Cancer
Biology 1 (2017): 119-140.

Reiche, Edna Maria Vissoci, Sandra Odebrecht Vargas Nunes, and Helena Kaminami
Morimoto. "Stress, depression, the immune system, and cancer." The lancet oncology 5,
no. 10 (2004): 617-625.

Sklar, L. S., & Anisman, H. (1981). Stress and cancer. Psychological bulletin, 89(3), 369.

Soung, Nak Kyun, and Bo Yeon Kim. "Psychological stress and cancer." Journal of
Analytical Science and Technology 6 (2015): 1-6.

Jin Shin, Kyeong, Yu Jin Lee, Yong Ryoul Yang, Seorim Park, Pann-Ghill Suh, Matilde
Yung Follo, Lucio Cocco, and Sung Ho Ryu. "Molecular mechanisms underlying
psychological stress and cancer." Current pharmaceutical design 22, no. 16 (2016): 2389-
2402.



https://www.cancer.qov/about-
cancer/coping/feelings/stress-fact-sheet

 Even when stress appears to be linked to cancer risk,
the relationship could be indirect.

 For example, people under chronic stress may develop
certain unhealthy behaviors, such as smoking,
overeating, becoming less active, or drinking alcohol,
that are themselves associated with increased risks of
some cancers

Accessed 8/22/2023



Risk, what is risk, is it minimized?

Hayes, RB. (2022) Nuclear energy myths versus facts support it's expanded
use - a review. Vol. 2, Cleaner Energy Systems 100009, ISSN 2772-7831.



VB EULRUNMISIIRS  Nuclear weapons background doses
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Simon, Steven L., André Bouville, and Charles E. Land. "Fallout from nuclear weapons
tests and cancer risks: exposures 50 years ago still have health implications today that
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NUCLEAR ENGINEERING will continue into the future." American Scientist 94, no. 1 (2006): 48-57.
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70
®m EROI, unbuffered

" ERQI, buffered
60

Weilibach, Daniel, G. Ruprecht, A. Huke,
50 K. Czerski, S. Gottlieb, and A. Hussein.
"Energy intensities, EROIs (energy

O 40 returned on invested), and energy payback
5 times of electricity generating power
plants." Energy 52 (2013): 210-221.
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Can we move nuclear waste safely?

Croff AG, Hermann OW, Alexandder CW. Calculated, To-Dimensional
Dose rates from a PWR Fuel Assembly. ORNL/TM-6754. Oak Ridge
National Laboratory, Oak Ridge TN 1979.

Approximate levels of risk
10,000 rem = Death

2,000 rem = cataract event
400 rem = LD50/30

100 rem = gonad sterilization
20 rem = cancer threshold

5 rem = legal for radworker
0.5 rem < average US citizen

How robust are the shipping containers?
https://www.nrc.gov/docs/ML1532/ML15322A230.pdf
https://www3.epa.gov/radtown/transporting-
materials.html




What are acceptable death rates?

An average of 4.4x10~ fatalities per
year for a 0.014 GW wind farm
which looks negligibly small
compared to the values on the right
but not compared to nuclear. Using
the value of 3x10-3 deaths per GW
from wind, for the US nuclear
capacity in 2018 of 8x10° this would
have been over 2500 deaths per
year from nuclear (vs. 0).

GW, Aneziris, O. N., Papazoglou, I. A., & Psinias, A. (2016).
Occupational risk for an onshore wind farm. Safety Science, 88, 188-
198. doi:10.1016/j.ssc¢i.2016.02.021

Hayes, RB. (2022) Nuclear energy
myths versus facts support it's expanded

use - a review. Vol. 2, Cleaner Energy
Systems 100009, ISSN 2772-7831.
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| chg ra p h iC: Countries with Countries
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8 ndia == [srael

I¢ Pakistan o= North Korea
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== Netherlands
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