Opening Address

Hon Ted O'Brien

Navigating Nuclear UNSW Sydney - 13 May 2024

A one day opportunity to learn everything you need to know about nuclear energy and what it means for Australia's future from global experts.

Closing Address

Dr Adi Paterson

Speakers & Organising Committee

Jaz Diab - Women in Nuclear

Shirvan - MIT

Buongiorno - MIT

Prof Jacopo

Prof Rob Hayes - North Carolina State University

Dr Dave Collins MIT/PhD UMelb

Prof Simon Michaux -Geological Survey of Finland/PhD UO

Dr Sarah Lawley -

PhD UAdelaide

Mark Nelson - Radiant Energy/UCambridge

Sai Prasad Balla MIT

Steven Nowakowski -Rainforest Reserves Australia

Helen Cook -**GNE** Advisory

Dr Ross Koningstein - Atte Harjanne - MP Google/PhD Stanford Finland Greens/PhD Candidate UAalto

Prof Mike Golay -MIT/PhD CornellU

Tony Irwin – ANU

Dr Mark Ho -Dr John Harries – Australian Nuclear Australian Nuclear Association Association

Speakers & topics

Organising Committee

Dr Dave Collins (Chair), Dr Mark Ho (President, Australian Nuclear Association), Jasmine Diab (President, Women in Nuclear), Dr John Harries (Secretary, Australian Nuclear Association).

Acknowledgments

Sincere thanks to the following for their support and advice without whom the workshop would not have been possible: Dr Robert Barr, Connor Davies, Prof Julien Epps, Prof Stephen Foster, James Fleay, Tony Irwin, Prof Ed Obbard, Hasliza Omar, Robert Parker, Dr Adi Paterson, Chiara Scalise, Peter Sjoquist, Dr Tim Stone, Prof Peter Tyree, Darka de Vries and the speakers and organising committee.

Chatham House Rules

The Q&As and the Discussion panel were not recorded under the agreed Chatham House Rules.

No	Торіс	Speakers and affiliation
1	Opening address	Hon Ted O'Brien – Australian
		Parliament
2	Introduction to Navigating Nuclear	Jasmin Diab – Global Nuclear
		Security Partners
3	How does nuclear energy work?	Prof Koroush Shirvan - MIT
4	Nuclear energy in the 21 st century	Professor Jacopo Buongiorno - MIT
5	Radiological risk in perspective	Professor Robert Hayes - North
		Carolina State University
6	What would the environmental	Dr Dave Collins - MIT
	impacts of nuclear energy in	
	Australia be?	
7	Challenges and bottlenecks to the	Professor Simon Michaux -
	green transition	Geological Survey of Finland
8	Australia's electricity system	Dr Sarah Lawley - PhD University of
		Adelaide
9	What is the value of nuclear energy?	Mark Nelson - Radiant Energy Group
10	What happens inside an operating	Sai Prasad Balla - MIT
	nuclear power plant?	
11	Environmental impacts of renewable	Steven Nowakowski and Jeanette
	energy in Queensland	Kemp - Rainforest Reserves Australia
12	Current nuclear energy	Helen Cook - GNE Advisory
	developments around the world	
13	A discovery that nuclear was	Dr Ross Koningstein - Google
	nonpartisan in the USA	
14	How nuclear became green in	Atte Harjanne - Finland Parliament
	Finland	
15	Experience and lessons from	Professor Michael Golay - MIT
	creating nuclear safety cultures	
Not	Discussion panel	Chair: Tony Irwin - ANU
recorded		
16	Closing address	Dr Adi Paterson – ANSTO (retired)

Navigating Nuclear 2024

What happens inside an operating Nuclear Power Plant?

UNSW Sydney

13 May 2024

Sai Prasad Balla

MIT SDM (MS), Certified Reactor Operator

Presentation layout

- Bio & Motivation
- Nuclear Reactor 101
- Design principles
- Main Control Room overview
- Training

Hometown at a glance

Coal Mines in Korba

Coal Transportation

Coal Handling

Hometown at a glance

Emissions from coal power plant

Ash Bund

Education and training

X

BE Mechanical

Education and training

Education and training

Work experience

Work experience

Work experience

Current education

What is the source of nuclear energy ?

The source of Nuclear Energy lies in the equivalence of mass and energy according to Einstein's equation:

 $E = m c^2$

where

E is the Energy, Joulesc is the velocity of light, m/sm is the mass, kg

Nat. U fuel bundle (23.8 kg) is equivalent to 360-400 tons of coal

How does a nuclear power plant work ?

Field view of equipment

Pump Room

Reactor Coolant Pump

Field view of equipment

Generator/Exciter

6.6 KV Switchyard

Design principles to ensure safety

- Diversity: Different methods or technologies to achieve the same safety function.
- Redundancy: Multiple components that perform the same function.
- Physical separation: Components are physically separated.
- Independence: Operation of safety systems does not rely on the functioning of other systems.

Principles in action: Shutdown system

Main Control Room Overview

- Nerve-center to generate electricity safely and efficiently.
- Monitoring and controlling of plant systems.
- Tens of thousands of field values are relayed into MCR.
- Remote video monitoring.

Main control room overview

- Ensuring availability of standby/ passive equipment.
- Start-up of reactor, Shut-down of reactor.
- Alarms indicate system deviation, which requires operator attention. Color-coded for easy identification.
- What if the Main Control Room becomes unavailable?

Similarity with Simpsons?

Source: 20th century fox

Rigorous training to become a nuclear plant operator

- Full scope simulator.
- Certified operator Initial training 2 years training to develop expertise across all sixty systems.
- Certification exam 70% passing criteria.
- Interview with both senior management and regulators.
- Periodic requalification.
- Continual training training never stops.

Training is wellrounded, supported by state-of-the-art facilities

Mechanical Shop

Electrical Shop

Power Plant Demonstration

Radiation Physics Shop

Takeaways

- Design principles of nuclear power plants ensure safety.
- As operators, we understand, appreciate, and respect those design limitations during plant operations.
- Training plays a crucial role.
- A challenging yet fulfilling career.

THANK YOU

SAIBALLA@MIT.EDU FOR FURTHER QUERIES/ DOUBTS